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Abstract: Background: In the past few years, great of attention has been paid to the identifi-
cation and characterization of selective and potent inhibitors of the first identified histone de-
methylase LSD1, which may erase mono- and di-methylated histone 3 lysine 4 and 9. As the 
aberrant overexpression of LSD1 is involved in various pathological processes, especially 
cancer, obtaining selective and potent LSD1 inhibitors has emerged as a crucial issue in me-
dicinal chemistry research.  
Method: Until now, several LSD1 inhibitor screening models have been established, includ-
ing enzyme coupled assay, LC-MS based assay, and FRET based assay. Nevertheless, due to 
some special instrument requirement and additional costs of LC-MS and FRET, the enzyme 
coupled assay is the most widely applied method for LSD1 inhibitor screening.  
Result: We summarized and compared several reported in vitro LSD1 inhibitor screening 
models. Each of them has distinct advantages and disadvantages, and none of these methods 
is perfect. In order to exclude the false positive results, at least one additional method should 
be applied to screen LSD1 inhibitors. 
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1. INTRODUCTION 

The histone code features reversible lysine modifi-
cations as a major contributor for the regulation of 
chromatin accessibility, gene expression, and cellular 
growth. Acetylation and methylation of the lysine side 
chain are considered the dominant and best-studied 
post-translational modifications in histones. Lysine 
acetylation is regulated by histone acetyltransferases 
(HATs) and histone deacetylases (HDACs), whereas 
lysine methylation is regulated by histone lysine meth- 
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yltransferases (HMTs) and histone lysine demethylases 
(KDMs) [1]. Whereas acetylation of the lysine only 
occurs once per residue, lysine methylation can occur 
as mono-, di-, and trimethylation forms. LSD1 is the 
first identified KDM in 2004 [2]. Historically, it was 
uncertain as to whether protein lysine methylation was 
reversible. Since then, tens of KDMs were character-
ized, and divided into two groups, including flavin 
adenine dinucleotide (FAD) dependent KDMs and Ju-
monji C (JMJC) domain containing KDMs [1]. In the 
FAD dependent KDMs family, there are three mem-
bers, lysine demethylase 1(LSD1), LSD1+8a [3] and 
LSD2 [4-7], and all of them utilize the cofactor FAD 
during catalysis of demethylation. Meanwhile, they 
may erase mono-, di- methylated lysine residue. During 
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the reaction, each catalytic cycle of methyl removal 
produces a molecule of formaldehyde and H2O2, re-
spectively, while consuming O2. Molecular oxygen is 
used as the electron acceptor and methyl group oxida-
tion is then proceeded via hydride transfer from the N-
methyl group onto FAD, forming an imine, which is 
unstable to hydrolysis [8]. To produce the resultant 
imine, the methyl group of lysine is oxidized and hy-
drolyzed to form formaldehyde (Scheme 1). In this re-
action, the amount of H2O2 produced in the demethyla-
tion indicates the activity of the FAD dependent KDM. 
Hence, quantification of the byproduct, H2O2, is an op-
tion to evaluate the activity of the KDM.  

 
Scheme 1. The mechanism of LSD1 catalysis. 

Until now, plenty of articles have indicated that 
LSD1 is overexpressed in several kinds of cancers and 
contributes to the cancer cell proliferation [1, 9, 10]. 
Meanwhile, three of LSD1 inhibitors have entered into 
clinic trials for the treatment of small cell lung cancer 
and acute myelogenous leukemia, including ORY1001 
(also called RG6016) from Oyrzon, GSK2879552 from 
GlaxoSmithKline and INCB059872 from Incyte [9-12]. 
Hence, LSD1 is a promising target for cancer therapy, 
especially small cell lung cancer and leukemia, and 
many medicinal chemists try to purse potent and selec-
tive LSD1 inhibitor. Until now, there are several meth-
ods for the screening of LSD1 inhibitors. All these 
methods can be divided into three groups, label free 
method, fluorescence resonance energy transfer 
(FRET) based method and byproduct quantification 
method. For the label free method, mass spectrometry 
platform is applied to monitor the amount of LSD1 
substrate H3K4me2 [13, 14]; surface plasmon reso-
nance (SPR), isothermal titration calorimetry (ITC) and 
bio-layer interferometry (BLI) are applied to monitor 
the protein- molecule interaction. Nevertheless, all of 
these methods required additional expensive equipment 
and professional skills for the operation, and for the 
compound screening, it will take long time for the op-
eration as well complicated steps for sample prepara-
tion. For the FRET based method, time-resolved fluo-
rescence resonance energy transfer (TR-FRET) has 
been reported for LSD1 inhibitor screening [15]. Be-

sides, there are also some commercially available kits 
from PerkinElmer and CisBio for the FRET based 
LSD1 inhibitor screening. These methods are sensitive, 
robust and scalable. However, all these FRET based 
methods need additional tag for the screening, which 
may impact the conformation of the target protein. 
Sometimes, antibody required in these assays may also 
lead to additional cost and unexpected unspecificity. 
Hence, the byproduct quantification method is widely 
used primarily for enzyme inhibitor screening as this 
method is costs acceptable, scalable, sensitive, and easy 
to operate and do not need additional equipment, and 
so is LSD1 [16-25].  

Until now, several LSD1 inhibitor screening meth-
ods have been reported. We have also applied some of 
these methods in our LSD1 inhibitor evaluation [1, 10, 
16]. Here, several LSD1 inhibitor screening models 
will be stated. 

2.1. Mass spectrometry Based LSD1 Inhibitor 
Screening Model 

As a molecular balance, mass spectrometry was 
used to obtain the accurate mass of the specific mole-
cule, and it has been applied for the LSD1 inhibitor 
screening [13, 14]. Products with LSD1 substrate were 
contained in an assay well, then the assay used Rapid-
Fire chromatography in line with a triple stage quad-
rupole detection method to measure the assay well 
[14]. After that, self-assembled monolayer desorp-
tion/ionization (SAMDI) mass was applied in 384-well 
format and before injecting into a mass spectrometer, 
the sample can be rapidly purified prior to injection 
into a mass spectrometer, in this way, the assay will get 
rid of the complex chromatographic steps [13]. Both of 
these two methods utilize a short amino acid peptide as 
a substrate, which corresponds to the first 21 amino 
acid residues of histone 3, and they are all based on 
measurement of the amount of the direct formation of 
unmethylated and mono-methylated peptide, and their 
quantity can indicate the process of LSD1 demethyla-
tion. 

2.2. Luminol Coupled Assay for LSD1 

Luminol (5-amino-2,3-dihydro-1,4-phthalazine-
dione) is a cyclic acyl-hydrazide. The luminol reaction 
is in line with a way of direct chemiluminescence [26]. 
The excited state of 3-aminophthalate generated during 
the luminol oxidation process can perfectly match the 
chemiluminescence spectrum of luminol, so excited 3-
aminophthalate dianion can be considered as the light-
emitting intermediate molecular [27, 28]. The chemi-
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luminescence of luminol was demonstrated at 425 nm 
λMax in the system of alkaline solution of luminol oxi-
dized by oxidizing agents, such as hydrogen peroxide, 
ozone, halogens, etc. And hydrogen peroxide is the 
strongest oxidant that can increase the light intensity of 
luminol [29]. 

As one molecular hydrogen peroxide can be pro-
duced during the demethylation of LSD1 acting on 
H3K4me2 [2], the quantity of hydrogen peroxide can 
be obtained by the application of luminol. After the 
LSD1 recombinant was incubated with substrate pep-
tide and different candidate compounds, the generated 
H2O2 can be quantified by adding luminol and horse-
radish peroxidase (HRP), and the quantity of H2O2 may 
illustrate the LSD1 activity (Fig. 1). The amount of 
H2O2 would be decreased when the process of demeth-
ylation by LSD1 was suppressed by LSD1 inhibitors 
[30-33]. Hence, luminescence-based method can be 
used for the detection of the enzymatic activity of 
LSD1 as well as the activity of the inhibitors (Fig. 1) 
[30]. 

 
Fig. (1). Work flow of luminol coupled assay for LSD1. 

Chemiluminescence-based methods are widely used 
in various assays because of its easy availability, sim-
ple operation and low cost. Nevertheless, the chemilu-
minescence should be monitored immediately after the 
adding of luminol and HRP as the light cannot last for 
a long time unless the luminol was replaced by some 
other new chemiluminescence reagent, such as Lumi-
gen. Hence, when luminol was applied for LSD1 in-
hibitor screening, additional injector is required for the 
multi-detection microplate reader, so that each well can 
be monitored as soon as luminol and HRP were added 
into the mixture. Besides, compound that may have 
inherent luminescence or interact with HRP or H2O2 
may also lead to the false positive result.  

2.3. Amplex Red Coupled Assay for LSD1 

Amplex red reagent, in combination with HRP, has 
been used to detect H2O2 released from various bio-
logical samples, including cells, or generated in en-
zyme-coupled reactions [34]. Furthermore, amplex red 
reagent can be used in an ultrasensitive assay for per-
oxidase activity when H2O2 is excess. In the presence 
of peroxidase, the amplex red reagent reacts with H2O2 
in a 1:1 stoichiometry to produce the red-fluorescent 
oxidation product, resorufin. Resorufin has excitation 
and emission maxima of approximately 563 nm and 

587 nm, respectively, and because the extinction coef-
ficient is high (58000 ± 5000 cm–1M–1), this assay can 
be monitored fluorometrically or spectrophotometri-
cally. This reaction has been used to detect as little as 
10 picomoles of H2O2 in a 100 µL volume or 1 x 10–5 
U/mL of HRP [34]. With this method, amplex red cou-
pled assay for LSD1 was established as reported [22]. 
Until now, plenty of articles have applied this method 
for primary screening as well as LSD1 activity evalua-
tion (Fig. 1) [16, 17, 22, 35-37].  

Until now, some commercialized kits also use this 
method for LSD1 inhibitor screening as this experi-
ment can be performed within 45min with strong sensi-
tivity and low costs. Nevertheless, there are still some 
limitations on this method. When the candidate com-
pound shows similar spectrum with excitation wave-
length at 563nm and emission wavelength at 587nm, 
self-fluoresce of the candidate compound may interfere 
with the result indicated by resorufin, which may lead 
to false positive results of the candidate compound. 
Meanwhile, compounds with strong reducibility may 
also interact with HRP or H2O2, which leads to the 
false positive results. Hence, for high throughput 
screening, amplex red coupled assay for LSD1 can be 
applied for the first round screening, but additional ex-
periments will be needed for further confirmation. 

 
Fig. (2). Work flow of amplex red coupled assay for LSD1. 

2.4. 4-aminoantipyrine Coupled Assay for LSD1 

Furthermore, activity of LSD1 can also be moni-
tored by absorbance. As reported, 3,5-dichloro-2-
hydroxybenzenesulfonic acid (DHBS) and 4-
aminoantipyrine (4-AA) can be oxidized by HRP to 
form quinone dye in the presence of H2O2 [38]. The 
amount of reacted quinone dye can be monitored at 
545-556 nm. The color of quinone dye was directly 
correlated with the amount of H2O2. By measuring the 
absorbance of quinone dye with similar work flow as 
Fig. (2), the amount of hydrogen peroxide was indi-
rectly determined, then the activity of LSD1 can be 
elucidated (Fig. 1) [39]. If LSD1 inhibitors are added in 
the demethylation process of LSD1, the amount of 
H2O2 will reduce. In that way, inhibitory effect of 
LSD1 inhibitor against the recombinant can be evalu-
ated.  

So far, several articles have applied this method for 
detecting LSD1 activity or the activity of the candidate 
compound against LSD1 [13, 40]. Nevertheless, this 
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assay is not so sensitive. In our laboratory, we failed to 
apply this method to detect LSD1 activity due to its 
poor sensitivity, and amplex red coupled assay was 
applied in our LSD1 inhibitor screening experiment 
[16, 41, 42]. 

2.5. FDH Coupled Assay for LSD1 

Formaldehyde dehydrogenase (FDH) is able to oxi-
dize formaldehyde into formic acid with NAD+ re-
stored to NADH [43]. NADH formation can be quanti-
fied by the measurement of its absorbance (λ = 340 
nm) or more sensitively by fluorescence intensity with 
excitation at 330 nm and emission at 460nm [44]. As 
LSD1 demethylation occurs via an oxidation reaction 
with formaldehyde [1], the generated formaldehyde can 
be evaluated with NAD+ quantification experiment, and 
then the enzymatic activity of LSD1 can be determined 
by measuring the production of NADH when the de-
methylation reaction is coupled with the FDH assay.  

Up to the present, FDH coupled assay has been used 
in the determination of LSD1 activity in several papers 
[2, 40], and was applied for the screening of LSD1 in-
hibitors [45]. The FDH coupling assay can be used to 
evaluate the demethylase activity of all histone lysine 
demethylases as they all generate formaldehyde during 
the demethylation reaction (Fig. 3). Furthermore, this 
method does not require the histone methylation-
specific antibody comparing to the following 
HTRF/Alpha based model, hence, it is widely used in 
the demethylation assay. However, false reactions from 
conjugated enzymes can lead to false positive and 
negative result, which require additional experiment for 
further confirmation. 

2.6. HTRF/Alpha Based LSD1 Inhibitor Screening 
Model 

Homogeneous time resolved fluorescence (HTRF) 
is widely used in cell and biochemical experiments, 

and can be applied to the research of proteins and pro-
teins, proteins and peptides, proteins and DNA /RNA 
interactions in different stages of drug studies. The 
HTRF technique mainly uses a europium-labeled anti-
body against the substrate or the demethylated product 
as a donor, and another fluorophore, such as ULight in 
LANCE Ultra, as the acceptor [15, 43]. When the do-
nor europium chelate is excited at 320 or 340 nm, en-
ergy in the form of FRET elicits fluorescence emission 
at 665 nm from a nearby streptavidin tagged ULight 
acceptor bound to biotinylated peptide substrate [43]. 
Currently, this technique has been used for high-
throughput screening of LSD1 inhibitors (Fig. 4A, B) 
[15]. Using europium cryptate-labeled antibody as a 
donor, streptavidin-tagged fluorophore acceptors bind 
to the biotinylated peptide substrate. If the methylation 
state recognized by the europium-labeled antibody is in 
close proximity to the acceptor, in this case allophyco-
cyanin (APC), FRET occurs upon donor excitation. 
The loss of FRET signal indicates demethylation of 
LSD1 [15, 43]. 

To date, some commercialized kits also use this 
method for LSD1 inhibitor screening because of its low 
background and high reproducibility. More impor-
tantly, it reduces nonspecific signals to negligible lev-
els and achieves an extremely high signal-to-noise ratio 
that greatly exceeds the sensitivity achieved by radioi-
sotopes [43]. However, this technique also has some 
drawbacks. Firstly, as the protein needs to be labeled, it 
may change the protein conformation, which may lead 
to some unexpected false-positives or false-negatives. 
It is emphasized that this technology is susceptible to 
quenching of singlet oxygen compounds [15]. Thence, 
HTRF technique is convenient for screening LSD1 in-
hibitors, but additional methods are needed to confirm 
it further. 

Amplified luminescent proximity homogeneous as-
say (ALPHA) technology (PerkinElmer, MA, USA) 

 
Fig. (3). Byproducts quantification method for high-throughput screening of LSD1 inhibitors.  



An Overview on Screening Methods for Lysine Specific Current Medicinal Chemistry, 2017, Vol. 24, No. 00    5 

has attracted extensive attention in many fields such as 
basic medical research, clinical testing and new drug 
development because of its advantages in sensitivity, 
real-time, fast and convenience [46-48]. Alpha is a 
bead-based system in which ‘donor’ beads excited by a 
laser transfer energy in the form of singlet oxygen to 
‘acceptor’ beads within 200 nm, inciting emission of a 
luminescent signal [49]. For the histone demethylase 
assays, a biotinylated histone H3-derived peptide is 
always applied as substrate. In the first step, the en-
zyme modifies the biotin labeled substrate in the pres-
ence of the required cofactor to generate the biotin la-
beled reaction product; the reaction product is then cap-
tured by streptavidin (SA) donor beads and anti-mark 
acceptor beads. Irradiation of complexed partners at 
680 nm initiates in SA donor beads the production of 
singlet oxygen (1O2) molecules that reach the acceptor 
beads in proximity to generate a cascade of energy 
transfer reactions culminating in an amplified light 
emission detected at 615 nm. Then the amplified light 
can be monitored with plate reader. Currently, analysis 
of LSD1 using ALPHA has already been reported (Fig. 
4A, B) [50]. 

ALPHA technology is also a very popular method 
due to its uniformity, convenience and simplicity. It 
provides higher sensitivity, wider dynamic range, and 
more sensitive detection limit of interactions between 
low binding substances. Of course, it is not a perfect 
technology and also has some shortcomings. Similar to 
HTRF method, it requires specific antibody-coated 
beads, and is susceptible to quenching of singlet oxy-
gen compounds [43]. Then, it may lead to false-
positive or false-negative results. Nevertheless, AL-
PHA method is only available from PerkinElmer, ac-

cessibility of the commercial kit should also be consid-
ered for the screening. 

2.7. Scintillation Proximity Assay for LSD1 

Scintillation proximity assay (SPA), widely re-
garded as the "gold standard" for radio-high-throughput 
screening, is a radio-isotopic technology format and 
has been applied to cell adhesion molecule binding, 
protein-peptide interaction, protein-DNA interaction 
and cell biochemical assays [51, 52]. With this method, 
the beads in the SPA have a scintillator that, when 
stimulated, emits light, stimulates when the radiola-
beled molecules interact and bind to the surface of the 
bead. This interaction will trigger the emission of light 
from the bead, which will produce the energy conver-
sion of the radioactive decay that releases the photon, 
which can be detected by using a photomultiplier tube 
such as a scintillation counter or a CCD imager [52]. 
Simultaneously, scintillation proximity assay for the 
lysine KDMs was established as reported [53]. Biotin-
labeled methylated peptides are demethylated by a 
KDM, and subsequently a protein methyltransferase 
KMT7 is added to methylate the peptide product with 
3H labeled SAM (S-(50-adenosyl)-L-methionine) after 
KDMs is quenched by heat shock. In this manner, 
KDMs activity is monitored by the incorporation of a 
3H-methyl group into the target peptide (Fig. 5). 

This method requires no separation step and is not 
sensitive to the fluorescence interference from the can-
didate compound. More importantly, this assay requires 
both the writer and eraser of the histone modification, 
and additional optimization for this assay is necessary 
for the two steps reaction.  

 
Fig. (4). HTRF/Alpha based LSD1 inhibitor screening model. A, Work flow of HTRF/Alpha based LSD1 inhibitor screening 
model; B, Principle of HTRF/Alpha based LSD1 inhibitor screening model. 
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Fig. (5). Work flow of scintillation proximity assay for LSD1. 

Table 1. Evaluation of the platforms used in recent high-throughput screening campaigns for inhibitors oflysine demet. 

Types Apparatus 
requirement 

Costs High-
throughput 

Pros Cons 

Mass spectrometry Mass spec-
trometer 

High No Lable free;Direct 
readout of product 

formation 

Low throughput 

Luminol coupled assay Plate reader Low Yes Lable free;High 
sensitivity 

Compound that may interact with H2O2 
is not applicable 

Amplex red coupled 
assay 

Plate reader Low Yes Lable free;High 
sensitivity 

Not available for compound with auto-
fluorescence and/or quench-

ing;Compound that may interact with 
H2O2 is not applicable 

4-aminoantipyrine cou-
pled assay 

Plate reader Low Yes Lable free Poor sensitivity;Compound that may 
interact with H2O2 is not applicable 

FDH coupled assay Plate reader Low Yes Lable free Compound that may interact with 
HCHO is not applicable 

HTRF/Alpha based as-
say 

Plate reader Medium Yes High sensitivity Requires labeled antibodies;susceptible 
to 

autofluorescence and/or quenching by 
compounds 

Scintillation proximity 
assay 

Scintillation 
counter 

Medium Yes High sensitivity Heat required; Additional enzyme reac-
tion required 

 

CONCLUSION 

As the substrate of LSD1 is H3K4me1/2, inactiva-
tion of LSD1 may lead to the accumulation in some 
cell lines. Nevertheless, different from other histone 
demethylase, inactivation of LSD1 does not lead to the 
accumulation of global H3K4me1/2 in some cell lines 
[54], quantification of H3K4me1/2 in cells, either use 
plate reader or high content analysis, is not applicable 
for LSD1 inhibitor screening. In some cases, accumula-
tion of H3K4me1/2 occurs around some specific pro-
moters or enhancers, which suggest that chromatin 
immunoprecipitation- quantification polymerase chain 
reaction (ChIP-qPCR) have to be applied [37, 55, 56]. 
But ChIP-qPCR cannot be applied for inhibitor screen-
ing. Besides, some indirect inhibition to other targets 
may also lead to the downregulation of LSD1 expres-

sion or activity, so cell based assay is not applicable for 
LSD1. 

As stated above, there are several kinds of assays 
that can be applied for HTS of LSD1 inhibitors. Each 
method has its pros and cons (Table 1). Normally, two 
or more assays are needed for LSD1 inhibitor screen-
ing, and the method should be similar in the principle 
of the assay. In order to exclude the false positive re-
sults, only one byproduct quantification assay should 
be chosen, such as luminol coupled assay, amplex red 
coupled assay and 4-aminoantipyrine coupled assay, 
then FRET based assay, including ALPHA and HTRF, 
or substrate quantification assay, including mass spec-
trometry and scintillation proximity assay, can be util-
ized. Our lab used amplex red based assay for the first 
round screening due to its advantages in its short 
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screening time, which can be completed within 1 hour, 
low costs and sensitivity. Then we applied HTRF for 
the second round confirmation, which performs higher 
costs than amplex red assay with less false positive re-
sults. Finally, some label free techniques, such as 
Monolith NT.LabelFree instrument from NanoTemper 
and BLI from Pall were applied for further confirma-
tion [16, 57]. Hence, no matter which method is used 
for LSD1 inhibitor screening, pros and cons of the 
method should be evaluated carefully (Table 1) de-
pending on the experience of the researcher, and addi-
tional evaluation should be applied to compensate the 
shortage of the first round screening and exclude some 
false positive results. Finally, molecule interaction 
should also be evaluated to have some enzyme kinetic 
parameters. 

LIST OF ABBREVIATIONS 

KAT = Histone acetyltransferases 

HDAC = Histone deacetylase 

HMT = Histone lysine methyltransferase 

KDM = Histone lysine demethylase 

FAD = Flavin adenosine dinucleotide 

JMJC = Jumonji C 

SPR = Surface plasmon resonance 

ITC = Isothermal titration calorimetry 

BLI = Bio-layer interferometry 

FRET = Fluorescence resonance energy transfer  

TR-FRET = Time-resolved fluorescence resonance 
energy transfer 

LSD1 = Lysine demethylase 1 

SAMDI = Self-assembled monolayer desorp-
tion/ionization 

HRP = Horseradish peroxidase 

DHBS = 3,5-Dichloro-2-hydroxybenzene-
sulfonic acid 

4-AA = 4-Aminoantipyrine 

FDH = Formaldehyde dehydrogenase 

HTRF = Homogeneous time resolved fluores-
cence 

APC = Allophycocyanin 

ALPHA = Amplified luminescent proximity ho-
mogeneous assay 

SA = Streptavidin 

SPA = Scintillation proximity assay 

SAM = S-(50-adenosyl)-L-methionine 

ChIP-qPCR = Chromatin immunoprecipitation-
quantification polymerase chain reac-
tion. 
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