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Abstract: Background  Antibiotic resistance is one of the biggest threats to global 

health today, leading to higher medical costs and increased mortality. Because of the 

emergence and rapid spread of new resistance mechanisms globally, a growing number of 

infections are becoming harder to treat as the antibiotics used to treat them become less 

effective. Therefore, the development of new effective antimicrobial agents is still ur-

gently needed. In last decades, a large number of structurally novel spirooxindoles have 

been synthesized mainly based on the ylide intermediates generated in situ and further as-

sessed for their antimicrobial activity against different types of bacteria, leading to the di-

scovery of some potent lead compounds with antimicrobial potentials. 

Objective: The aim of this review to submarize recent advances on the synthesis, structu-

re-activity relationship studies (SARs) and antimicrobial activity of spirooxindoles. 

Methods: Peer-reviewed research work on spirooxindoles with antimicrobial activity we-

re downloaded from bibliographic databases and analyzed based on their chemoptypes. 

Results: 50 papers were retrieved from the literature databases, of which 20 papers de-

scribed the synthesis and antimicrobial activity of spirooxindoles. 

Conclusion: This review highlights the importance of spirooxindoles as potential antimi-

crobial agents. The antimicrobial activity of spirooxindoles against different types of bac-

teria is less studied, mainly centering on primary antimicrobial assessment, some of these 

compounds have showed interesting antimicrobial activity. However, the current study is 

only limited to primary antimicrobial assessment, no detailed modes of action are investi-

gated.  

Keywords: Spiro compounds, spirooxindoles, oxindoles, chemical synthesis, antimicrobial activity, antifungal ac-

tivity.  

1. INTRODUCTION 

Antibiotic resistance is one of the biggest threats to 

global health today, leading to higher medical costs and  
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increased mortality [1]. Because of the emergence and 

rapid spread of new resistance mechanisms globally, a 

growing number of infections are becoming harder to 

treat as the antibiotics used to treat them become less 

effective. The US Centers for Disease Control and Pre-

vention (CDC) estimates that there are about 23,000 

people who die every year from antibiotic-resistant in-

fections in the US. There is currently a shortage of ef-

fective therapies, lack of successful prevention meas-

ures, and only a few new antibiotics, which require 
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Fig. (1). Spirooxindole-based drug candidates in clinical trials.

 

development of novel treatment options and alternative 

antimicrobial therapies [2]. Therefore, the development 

of new effective antimicrobial agents is still urgently 

needed although these new therapeutic agents could not 

completely overcome the antimicrobial resistance. 

Great efforts have been devoted to the discovery of 

new antibiotics in last decades. Recently developed 

vancomycin 3.0 being about 25,000 times more potent 

than its predecessor-vancomycin 1.0 has a unique 

three-pronged approach to killing drug-resistant bacte-

ria and offers a potent weapon against antibiotic-

resistant infections [3]. 

The discovery of new structural scaffolds has re-

cently been recognized as an efficient strategy to find 

biologically promising molecules that can target some 

biological sites and explore more chemical space [4, 5] 

as some already known scaffolds have failed to target 

biologically relevant sites, especially the undruggable 

targets [6]. Of particular interest are spiro compounds, 

which have attracted ever increasing attention due to 

their highly pronounced biological properties [7, 8], 

interesting conformational features and unique 3D 

structural features. It is well recognized that spirocyclic 

compounds have a reduced conformational entropy 

upon binding to a protein target and conformational 

restriction, which make them the promising scaffolds in 

drug discovery [9]. In particular, spirooxindoles have 

emerged as attractive synthetic targets because of their 

prevalence in a large number of biologically validated 

natural alkaloids and pharmaceutically relevant mole-

cules [10-15]. The key structural characteristic of these 

compounds is the spiro ring fused at the C3 position of 

the oxindole core with varied heterocyclic motifs. 

These spirooxindoles seem to be promising candidates 

for drug discovery, since they incorporate both oxin-

doles and other heterocyclic moieties simultaneously. 

Spirooxindole is a privileged heterocyclic motif that 

exists in pharmaceutical candidates and naturally oc-

curring compounds. Spirooxindole (Highlighted in red 

in Fig. 1) containing compounds have exhibited diverse 

biological properties, such as anticancer [16-21], an-

timicrobial [22, 23], antivirus [24], etc. Representative 

examples are NITD609 (also known as Cipargamin) 

[25], CFI-400945 (the first PLK4 inhibitor) [26, 27], 

SAR405838 (MDM2 inhibitor) [28, 29] and APG-115 

(MDM2 inhibitor) Fig. 1 [30], which are currently 

being evaluated in clinic for the treatment of malaria 

and human cancers, respectively. In last decades, much 

efforts have been devoted to the development of new 

spirooxindole-based antimicrobial agents [31]. In this 

review, we first summarized the advances of antimi-

crobial spirooxindoles from the chemistry and biology 

perspectives with a hope of providing an overview of 

spirooxindoles with antimicrobial potentials and possi-

ble directions for designing more potent antimicrobial 

agents. This review is organized based on the spiro 

rings attached to the C3 position of the oxindole scaf-

fold. 

2. THE DEVELOPMENT OF NEW SPIROOXIN-

DOLES AS ANTIMICROBIAL AGENTS 

2.1. Spiropyrrolidine Oxindoles 

In 2014, Askri et al. synthesized a series of 

spiro[pyrrolidin-2,3-oxindoles] 5a-r through the exo-

selective 1,3-dipolar cycloaddition reaction of the stabi-

lized azomethine ylides 3 with various (E)-3-arylidene-
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Scheme 1. Synthesis of bis-spirooxindoles 5a-r with antimicrobial activity. 

 

N

O

O

R2

R1

+

O

O

H
N COOH

EtOH, reflux

N
O

R2

R1

O

O

N

N
O

R2

R1

O

O

N

EtOH, reflux

N
H

COOH

7a-n8a-n
 

Scheme 2. Synthesis of new spirooxindoles as antibacterial and anti-fungal agents. 

 

1-phenyl-pyrrolidine-2,5-diones 4. The ylides 3 were 

generated in situ by thermal prototropy of the corre-

sponding iminoesters 2 with (E)-3-arylidene-1-phenyl- 

pyrrolidine-2,5-diones 4 as dipolarophiles (Scheme 1) 

[32]. Interestingly, other possible diastereoisomers 6a-r 

were not observed. All products were obtained in good 

yields (63-95%) and with high regio- and stereoselectiv-

ity regardless of the electronic properties of the substitu-

ents at the para-position of the aryl groups. Among 

these series, compounds 5i (R1 = Br, R2 = H, Ar = p-

ClPh) and 5p (R1 = H, R2 = Me, Ar = Ph) showed com-

parable activity with ampicillin against Escherichia coli 
with the MIC value of 62.5 μg/mL. In the case of Pseu-
domonas aeruginosa, compound 5r (R1 = H, R2 = Me, 

Ar = 4-ClPh) was found to be the most active in vitro 

with the MIC of 62.5 μg/mL against MTCC 1688. Com-

pound 5f (R1 = Br, R2 = H, Ar = Ph) was found to be the 

most active derivative in vitro against Staphylococcus 
aureus MTCC 96 (MIC = 62.5 μg/mL). The in vitro 

antifungal activity was also evaluated, showing that 

compounds 5n ((R1 = NO2, R2 = H, Ar = 4-ClPh)) and 

5p displayed the highest activity against Griseofulvin 

with the MIC value of 200 μg/mL against Candida albi-
cans (MTCC 227). 

The Perumal group synthesized a series of novel 

spirooxindoles using the 1,3-dipolar cycloaddition of 

an azomethine ylide generated from isatin and sarco-

sine or L-proline with the dipolarophile 1,4-

naphthoquinone as the key step (Scheme 2) [33]. The 

antimicrobial activities of synthesized compounds were 

screened against eight bacteria and three fungi using in 
vitro disc diffusion method. Among these compounds, 

compound 7n (R1 = acetyl, R2 = H) was 1.6 times more 

active against S. aureus (MIC = 31.25 μg/mL) than 

streptomycin and ciprofloxacin, 6.4 times more active 

against M. luteus (MIC = 15.62 μg/mL) and S. typhi-
murium (MIC = 15.62 μg/mL) than ciprofloxacin, and 

more than 3.2 times more active against C. albicans 

fungi (MIC = 31.25 μg/mL) than fluconazole. The 

authors claimed that compound 7n could be potentially 

used to develop potent antibacterial and anti-fungal 

agents. 

Meshram et al. developed a simple one-pot three-

component aqueous phase protocol for the synthesis of 

functionalized spirooxindole derivatives by the reaction 

of isatin, β-nitrostyrene and benzyl amine/α-amino ac-

ids in water under microwave irradiation. The protocol 

allows facile construction of a library of spirooxindoles 

9a-v in moderate to good yields (up to 92%) with good 

diastereoselectivity (Scheme 3) [34]. The antimicrobial 

activity was assessed against Escherichia coli ATCC 

10536, Candida tropicalis ATCC 750, Staphylococcus 
aureus ATCC 25923 and Pseudomonas aeruginasa 

ATCC 15442 with reference standard ciprofloxacin 
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Scheme 4. Regioselective synthesis of spiropyrrolidine/pyrrolizine-oxindoles. 

 

using the agar well diffusion method. Interestingly, 

the majority of the synthesized compounds showed 

good to excellent activity, comparable to that of cipro-

floxacin (MIC = 0.3 μg/mL). The pyrrolidine NH and 

attached NO2 groups provide functional synthetic han-

dles which can be utilized to construct compound 

library of pharmaceutically and medicinally signifi-

cant. 

Mabkhot et al. reported the highly regioselective 

synthesis of new derivatives 10a–j and 12a–j through 

a 1,3-dipolar cycloaddition reaction of azomethine 

ylides generated in situ from isatin, sarcosine, and L-

proline through the decarboxylative route with dipola-

rophile (Scheme 4) [35]. However, the corresponding 

bis-adducts were not formed possibly due to the steric 

hindrance and fixing of the geometry of the spiropyr-

rolidine ring. All of the newly synthesized compounds 

were evaluated for their antimicrobial activities. Com-

pounds 12b (Ar = 4-NO2Ph), 12e (Ar = 4-MeOPh), 

12g (Ar = 2,4-diFPh) and 10c (Ar = 4-ClPh) exhibited 

the best inhibitory effect against Bacillis subtilis 

(RCMB 010067) with the IC50 values of 2.92, 1.34, 

1.36, and 1.24 μg/mL, respectively. SARs studies 

showed that the electron-withdrawing groups attached 

to the aryl rings were preferred over the electron-

donating groups for the antimicrobial effects. 

Similarly, the Perumal group also achieved the effi-

cient synthesis of structurally novel 1-methyl-3-[(E)-

arylmethylidene]tetrahydro-4(1H)-pyridinones 14-16 

by the reaction of 3-substituted 1-methyl-4-piperi- 

dones, isatin and L-proline, sarcosine or benzyl amine 

under reflux (Scheme 5) [36]. The products were ob-

tained in excellent yields and with high regio- and 

stereoselectivities. The compounds were screened for 

their in vitro activity against Mycobacterium tuberculo-
sis H37Rv (MTB), multi-drug resistant M. tuberculosis 

(MDR-TB) and Mycobacterium smegmatis (MC
2
) us-

ing the agar dilution method. Compound 15e (Ar = 2,4-

diClPh) showed the best potency with the MIC values 

of 1.76 and 0.88 μM, respectively against MTB and 

MDR-TB, more potent than control anti-TB drugs 

Isoniazid, Ethambutol and Pyrazinamide. For MDR-

TB, compounds 14c (Ar = 2-ClPh) and 14e (Ar = 2,4-

diClPh) were also active with the IC50 values of 3.58 

and 1.66 μM, respectively, possibly suggesting the im-

portance of the 2-Cl group of the phenyl ring for the 

observed activity against MDR-TB. Interestingly, all 

these compounds 14-16 showed good to excellent inhi-

bition against MTB, most of them were much more 

potent than reference drug pyrazinamide, underscoring 

the importance of such scaffolds for the activity against 

MTB. In contrast, compounds 14-16 exerted weak in-

hibition toward MC
2
. 
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Similar to above work, Raghunathan et al. synthe-

sized three series of spirooxindoles 17-19 from isatin, 

sarcosine, and the corresponding cyclohexanone-based 

dipolarophiles via the regioselective 1,3-dipolar cy-

cloaddition reactions (Scheme 6) [37]. Some of the 

compounds showed certain antibacterial and antifungal 

activity. 

Following their previous work on the identification 

of new antimycobacterial agents [36], Perumal et al. 
reported an atom economic and stereoselective synthe-

sis of several spiro-piperidin-4-ones 20-22 through the 

1,3-dipolar cycloaddition of azomethine ylides gener-

ated in situ from isatin and amino acids (L-proline, 

phenylglycine, and sarcosine) (Scheme 7) [38]. The 

compounds were screened for their in vitro and in vivo 

activity against MTB, MDR-TB and MC
2
. All com-

pounds showed moderate to excellent in vitro activity 

against MTB with MIC ranging from 0.07-53.30 μg/mL. 

Compound 22e (Ar = 4-FPh) was found to be the most 

active in vitro with the MIC value of 0.07 μg/mL against 

MTB and showed 5.1 and 67.2 times potency than isoni-

azid and ciprofloxacin, respectively. Compound 22e  

also potently inhibited MDR-TB with the MIC value of 

0.16 μg/mL. Collectively, for MTB, MDR-TB and  

MC
2
, compound 22e was the most potent compound, 

suggesting the importance of the core structure and 
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substituents attached to the phenyl ring. Further in vivo 

studies indicated that compound 22e decreased the bac-

terial load in lung and spleen tissues with 1.30 and 

3.73-log 10 protections, respectively, but was less po-

tent than isoniazid at the same dose level. Besides, 

compound 22e was nontoxic up to 62.5 μg/mL (111.41 

μM) and showed good selectivity index (IC50/MIC) of 

1634. Additionally, compound 21f (Ar = 2-ClPh) dis-

played the best potency against MTB, MDR-TB and 

MC
2
 with the IC50 values of 0.17, 0.08 and 1.47 μg/mL, 

respectively, significantly more potent than other com-

pounds of this series. Taken above data into considera-

tion, the substituents attached to the pyrrolidinyl ring 

played an essential role in the antimicrobial activity. 

Narayana et al. identified a new series of spiro-

oxindoles that could inhibit methionine tRNA synthase 

(PDB ID: 1PFV) and glucosamine-6-phosphate syn-

thase (PDB ID: 1JXA) enzymes through the virtual 

screening (Scheme 8). The compounds were efficiently 

synthesized from isatin, amino acids, and dipolarophile 

chalcones by a three-component 1,3-dipolar cycloaddi-

tion reaction [22]. These compounds were then then 

found to be active against Staphylococcus aureus, Es-
cherichia coli, Aspergillus niger and Aspergillus flavus. 
Compounds 23a (R1, R2, and R4 = H, R3 = 4-F), 23e 

(R1 = H, R2 = CH2OH, and R4 = Br, R3 = 4-F), 23g (R1 

= H, R2 = i-butyl, and R4 = Cl, R3 = 4-F) showed the 

MIC value of 0.8 μg/mL for their antitubercular activ-

ity. 

Raghunathan et al. described the synthesis of a se-

ries of structurally novel and complex dispiro pyrroliz-

idines 24 and 25 through the 1,3-dipolar cycloaddition 

reaction of azomethine ylides generated in situ from 

secondary amino acids and isatin with bischalcones 

(Scheme 9) [39]. These compounds were evaluated for 

their antibacterial activity, and some of them exhibited 

good antibacterial activity against Escherichia coli, 
Bacillus subtilis, Staphylococcus aureus, Salmonella 
typhi, Proteus vulgaris, and Proteusmirabilis. Com-

pounds 24c and 25c (R1 = H, R2 = OH) showed good 

antibacterial activity against the tested pathogens, more 

potent than Tetracycline. 

2.2. Spirooxindole Tetrahydrofurans and 4H-pyrans 

3-Hydroxyoxindole scaffolds exist in natural prod-

ucts and have proven to possess promising biological 

activities. 3-Hydroxyoxindoles as versatile precursors 

have also been used in the total synthesis of natural 

products and for constructing structurally novel scaf-

folds [40]. Based on the 3-hydroxyoxindoles, Xie et al. 
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[41] synthesized a series of new spirooxindole tetrahy-

drofuran derivatives 26a-p from oxindole derivatives 

and β-arylacrylonitrile derivatives in moderate to good 

yields (up to 88% yield) and with high diastereoselec-

tivity (up to 98: 2 dr) via the base-mediated cascade 

[3+2] double Michael reactions (Scheme 10). Spiroox-

indole tetrahydrofuran derivatives were then trans-

formed to functionalized spirooxindole octahydro-

furo[3,4-c]pyridine derivatives 27a-m under acidic 

conditions, which contain two new heterocyclic rings 

and two quaternary carbon centers. The antifungal ac-

tivities of all of the synthesized compounds were 

evaluated against Rhizoctonia solani, Fusarium sem-
itectum, Alternaria solani, Valsa mali and Fusarium 
graminearum using the mycelium growth rate method. 

In general, compounds 26a-p were much more potent 

than compounds 27a-m against Valsa mali and 

Fusarium graminearum, unveiling that the incorpora-

tion of the piperidine-2,6-dione into the core scaffold 

was unbeneficial for the activity. Among these com-

pounds, compound 27a (R1 = Me, R2 = Ph) exhibited 

the best potency against F. g. with an IC50 value of 3.31 

μg/mL, comparable to that of the control cyclohexi-

mide (IC50 = 3.3 μg/mL). 

Song et al. developed an efficient ultrasound-

promoted one-pot three-component synthesis of poly-

cyclic spirooxindole 4H-pyrans (Scheme 11) [42]. The 

antifungal activity was then determined by micro dilu-

tion method. Compound 28f (R1, R2, R5 = H, R3, R4 = 

Me) exhibited good inhibitory activity against Crypto-
coccus neoformans, Epidermophyton floccosum and 

Mucor racemosus with the MIC values of 16, 8, 16 

μg/mL, much more potent than the positive control 

drug fluconazole. 

4-hydroxycoumarin is a structural motif present in 

various pharmaceuticals and clinical drugs like war-

farin, etc. [43, 44]. Based on their unique pharmacol-

ogical properties, Praveen et al. speculated that com-

bining the structural characteristics of both spirooxin-

dole and 4-hydroxycoumarin moieties by a hybrid 

pharmacophore approach could remarkably enhance 

the biological activity. Based on the hypothesis, these 

two interesting heterocycles were utilized in the pres-

ence of Zn(OTf)2 for the synthesis of new spirooxin-

dole 4H-pyrans containing the bis-coumarin motif 

(Scheme 12) [45]. All compounds were obtained in 86-

95% yields. Interestingly, the in vitro antibacterial 
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and antifungal evaluation showed that the compounds 

29a (R, R’ = H), 29j (R = Bn, R’ = H), and 29m (R = 

H, R’ = Br) exerted promising antimicrobial activity 

with the MIC value of 62.5 μM. Docking studies 

showed that compound 29a was well fitted into the 

pocket of AmpC-β-lactamase receptor (PDB ID: 

3OT3). 

Similar to above work, the Wu group developed an 

efficient on-water synthesis of spirooxindole 4H-pyran 

30 (Scheme 13), which showed good activities against 

Micrococcus tetragenus, Bacillus cereus, Bacillus sub-
tilis, Staphylococcus aureus, S．albus and Escherichia 
coli. with the MIC values of 10, 8, 10, 7, 10 and 10 

μg/mL [46]. 

Hasaninejad et al. developed a highly efficient, one-

pot multi-component synthesis of novel bisspirooxin-

doles 31a-u featuring bis-spirooxindole scaffold with 

excellent yields (up to 95% yield) (Scheme 14) [23]. 

PEG-400 was used as a biodegradable polymeric sol-

vent in the reaction. 

2.3. Other Spirocyclic Oxindoles 

Ma et al. developed the nano CeO2-catalyzed syn-

thesis of two series of new spiro-oxindole dihydro-

quinazolinone derivatives (Scheme 15) [47]. The syn-

thesized compounds were evaluated for their in vitro 

antibacterial activity, and compounds 32i-p showed 
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considerable antibacterial activities against E. coli. with 

the MIC values between 62.5 and 15.6 μg/mL. Further 

molecular docking studies were performed to predict 

the interactions of the synthesized compounds in the 

active site of Biotin Carboxylase (EcBC) enzyme (PDB 

ID: 2W6O). 

Tiwari et al. efficiently synthesized two series of 

new 2,3-dihydrooxazole-spirooxindole derivatives 

(Scheme 16) and then evaluated their antibacterial and 

antifungal activity against Bacillus subtilis, Enterobac-
ter and Klebsiella pneumoniae using Ciprofloxacin as 

positive control [48]. Among these compounds, com-

pound 33g (R1 = 2,4-diCl) was found to be active 

against K. pneumoniae and S. fuliginea at 25 and 14 

μg/ml, respectively.  

Singh et al. developed a new eco-friendly strategy 

for the synthesis of novel spiro-oxindole derivatives by 

one-pot multicomponent reaction using isatins, urea 

and 1,3-dicarbonyls (Scheme 17) [49, 50]. β-

Cyclodextrin was used as the catalyst and can be re-

used for further reaction after recovery. The synthe-

sized compounds were evaluated for their antimicrobial 

activities against Escherichia coli, Staphylococcus 
aureus, Aspergillus niger and Candida albicans, show-

ing that all the synthesized spiro-oxindoles exhibited 

significant antimicrobial activity, equal to that of stan-

dard drug streptomycin. 

CONCLUSION AND OUTLOOK 

Spiro scaffolds have been recognized as privileged 

scaffolds in drug design due to their highly pronounced 

biological properties, interesting conformational fea-

tures and unique 3D structural features. In particular, 

spirooxindoles have emerged as attractive synthetic 

targets because of their prevalence in numerous bio-

logically validated natural alkaloids and pharmaceuti-

cally relevant molecules. The key structural character-

istic of these compounds is the spiro ring fused at the 

C3 position of the oxindole core with varied heterocyc-

lic motifs. Spirooxindole is a privileged heterocyclic 

motif that exists in pharmaceutical candidates and natu-

rally occurring compounds. Spirooxindole containing 

compounds have exhibited diverse biological proper-

ties. Antimalarial agent NITD609, PLK4 inhibitor CFI-

400945, MDM2 inhibitors SAR405838 and APG-115 

have advanced into clinical trials for the treatment of 

malaria and human cancers. In last decades, a large 

number of structurally novel spirooxindoles have been 

synthesized mainly based on the ylide intermediates 

generated in situ and further assessed for their antimi-

crobial activity against different types of bacteria, lead-
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ing to the discovery of some potent lead compounds 

with antimicrobial potentials. The structural complexity 

and diversity of spirooxindoles could be achieved by 

using diverse dipolarophiles and ylides generated from 

isatin and amino acid derivatives. However, the current 

study is only limited to primary antimicrobial assess-

ment, no detailed modes of action are investigated.  
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